

Available online at www.sciencedirect.com

Journal of Solid State Chemistry 174 (2003) 111-115

JOURNAL OF SOLID STATE CHEMISTRY

http://elsevier.com/locate/jssc

Hydrothermal synthesis and crystal structure of ErSeO₃Cl P.S. Berdonosov,^{a,*} D.G. Shabalin,^b A.V. Olenev,^a L.N. Demianets,^c V.A. Dolgikh,^a and B.A. Popovkin^a

^a Department of Chemistry, Moscow State University, 119992, GSP-2, Moscow, Russia ^b Department of Materials Sciences, Moscow State University, Moscow, Russia

^cInstitute of Crystallography, Russian Academy of Sciences, Moscow, Russia

Received 28 November 2002; received in revised form 13 February 2003; accepted 8 April 2003

Abstract

A new erbium-selenium oxychloride, ErSeO₃Cl, has been synthesized hydrothermally starting from $ErCl_3 \cdot 6H_2O$ and SeO_2 in LiCl aqueous solution, and its crystal structure solved from single-crystal X-ray diffraction data. $ErSeO_3Cl$ crystallizes in the HoTeO₃Cl structure type in the orthorhombic system, space group *Pnma* (No. 62), with the cell parameters a = 7.185(1) Å, b = 6.890(1) Å, c = 8.720(2) Å, V = 431.7(1) Å³, Z = 4. The structure was refined to R1 = 0.0259, wR2 = 0.0648 for 35 variables and 508 unique reflections. The 3D structure of $ErSeO_3Cl$ is formed from linked ErO_5Cl_2 polyhedra and SeO_3E (E—lone electron pair) polyhedra. We compare the crystal structure of $ErSeO_3Cl$ with the structures of other known rare-earth (Bi)–Se(Te) oxyhalides of the common formula $MChO_3X$ (M = Ln(Bi), Ch = Se, Te, X = Cl, Br, I). \bigcirc 2003 Elsevier Science (USA). All rights reserved.

Keywords: Erbium-selenium oxychloride; Hydrothermal synthesis; Crystal structure

1. Introduction

The family of layered rare-earth or bismuth (III) and tellurium (IV) oxyhalides is rich with Sillen-type compounds and exhibits anomalously high percentage of non-centrosymmetric structures [1–7]. The Sillen-type structure is an ordered sequence of fluorite-derived metal–oxygen layers and sheets of halide ions. It is believed that Bi–Te (or Ln–Te) cation ordering, as well as displacement of oxygen and halide ions from their ideal positions, are the driving force for occurrence of non-centrosymmetry so frequent in the class of Bi–Te and Ln–Te oxyhalides.

Thus, we supposed that related compounds of Se (IV), which is an electronic analog of Te (IV), might exhibit similar behavior. The first representative of the selenium series, BiSeO₃Cl, demonstrates several different crystal structures [8,9]; however, its α -modification exhibits strong non-linear optical activity. Hence, the search for other Bi or *Ln*-Se(IV) oxide halogenides is likely to produce new interesting and promising materials. The synthesis and X-ray powder characterization of a new family of rare-earth-selenium (IV) oxyhalides with composition $LnSeO_3Cl$ revealed two isostructural groups of compounds [10]. The compounds of La–Eu are tetragonal and possibly similar to BiTeO₃Br [3], while their analogs with smaller lanthanides and Y belong to a novel orthorhombic structure type.

The aim of the present investigation is the determination of the crystal structure of $ErSeO_3Cl$ as the representative of the $LnSeO_3Cl$ (Ln=Tb-Yb, Y) type. It should be mentioned that last year the crystal structure of a 3D Ho–Te oxychloride HoTeO_3Cl was reported [11]. This fact indicates that crystal chemistry of Ln–Te(Se) oxyhalides is not completely clear.

2. Experimental

2.1. Synthesis

Single crystals of $ErSeO_3Cl$ were obtained by the hydrothermal method. The starting materials and solvents used are given in Table 1. SeO_2 was prepared according to Ref. [12] by oxidizing selenium (>99.9999

^{*}Corresponding author. Fax: +7-095-939-0998.

E-mail address: psberd@inorg.chem.msu.ru (P.S. Berdonosov).

Table 1 Starting compositions for hydrothermal synthesis

Sample	Mass SeO ₂ (g)	$\begin{array}{l} Mass \\ ErCl_3 \cdot 6H_2O \\ (g) \end{array}$	Mass Er ₂ O ₃ (g)	SeO ₂ /second component molar ratio	Solution (ml)
1	0.6634	2.2816		1/1	NH ₄ Cl 7% 8.0
2	0.7453	2.5608		1/1	LiOH 10% 7.7
3	0.7199	2.4688		1/1	LiCl 20% 8.0
4	0.8519		2.9382	1/1	NH4Cl 7% 8.2
5	0.9074		3.1240	1/1	LiCl 30% 8.7

purity) by O_2 -NO₂ mixture. The rest of the components were obtained commercially and were of reagent grade.

The hydrothermal syntheses were performed in sealed Teflon bombs of 11 cm³ volume. The filling ratio of the solution was 70% of the bomb volume. The bombs were placed in steel autoclaves with ~ 160–170 cm³ volume, and the synthesis was conducted at 280°C for 10 days. For the pressure balancing in the autoclaves, the calculated amounts of distilled water were added to autoclaves up to the 70% filling ratio. Pink precipitates and solutions were found as the reaction products. The solutions were decanted and the precipitates were washed with water, and dried first at 90°C in air, then at 150–180°C under dynamic vacuum (~10⁻¹Torr).

2.2. Sample characterization

The crystalline products obtained were identified with X-ray phase analysis (STOE STADI/P diffractometer, Cu $K\alpha_1$ radiation). The X-ray data from Ref. [10] and JCPDS database were used as references. We were unable to identify the products of the experiments 1, 4 and 5. The target compound ErSeO₃Cl was observed as a fine powder in experiment 2 (with small amount of an admixture phase) and as perfect pink crystals of hexagonal bipyramidal shape in experiment 3 (Table 1). The X-ray diffraction pattern of the crushed crystals proved to be identical to that given in Ref. [10], thus indexed as orthorhombic system with the cell parameters a = 7.173(2) Å, b = 6.883(2) Å, c = 8.710(2) Å, F(30) = 22.3.

The absence of the bands typical for chemically bound and adsorbed water in the IR spectra (PE 1600 FTIR Fourier spectrometer, the samples were ground crystals suspended in Vaseline oil) allowed us to conclude that the compound did not contain crystallization water.

2.3. Structure determination

The selected single crystal was mounted on a CAD-4 (Nonius) goniometer head for structure determination. Orthorhombic unit-cell parameters (a = 7.185(1) Å, b = 6.890(1) Å, c = 8.720(2) Å) were refined based on

24 well-centered reflections in the angular range $14.3^{\circ} < \theta < 15.7^{\circ}$. The data set was collected at ambient temperature in $\omega - 2\theta$ mode with the data-collection parameters listed in Table 2. A semiempirical absorption correction was applied to the data based on ψ -scans of seven reflections having their χ angles close to 90°. Analysis of the systematic extinctions revealed two possible space groups *Pna2*₁ (No. 33) and *Pnma* (No. 62). The crystal structure was successfully refined in the centrosymmetric space group *Pnma*. Positions of erbium and selenium atoms were found by means of direct methods (SHELXS-97) [13]. Chlorine and oxygen atoms were localized by a sequence of least-square cycles and $\Delta \rho(xyz)$ synthesis. Final anisotropic refinement on F^2 (SHELXL -97) [14] led to R1 = 0.0259, and wR2 = 0.0648.

Data-collection parameters are given in Table 2. Further details of the crystal structure investigation(s) can be obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (Fax: +49-7247-808-666, E-mail: crysdata@fiz-karlsruhe.de) on quoting the deposited number CSD-412861). Final positional and thermal atomic parameters for ErSeO₃Cl are shown in Table 3, and main bond distances are collected in Table 4.

Table 2 Crystal data and structure refinement for ErSeO₃Cl

Empirical formula	ErSeO ₃ Cl
Formula weight	329.67
Temperature	293(2) K
Wavelength	0.71073 Å
Space group	<i>Pnma</i> (No. 62)
Unit-cell dimensions	a = 7.185(1) Å
	b = 6.890(1) Å
	c = 8.720(2) Å
Volume	431.68(13)Å ³
Ζ	4
Calculated density	$5.073 \mathrm{g/cm^3}$
Absorption coefficient	$28.341 \mathrm{mm^{-1}}$
Crystal size	$0.10 \times 0.15 \times 0.15 \mathrm{mm}^3$
Theta range for data collection	3.67–26.94°
Reflections collected/unique	1083/508 [R(int) = 0.0332]
Data/parameters	508/35
Goodness-of-fit on F^2	1.050
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0259, WR2 = 0.0648
R indices (all data)	R1 = 0.0278, wR2 = 0.0659
Extinction coefficient	0.0034(5)
Largest diff. peak and hole	2.521 and $-2.919e \text{ Å}^{-3}$
Depository no.	CSD 412861

Table 3

Atomic and thermal parameters for ErSeO₃Cl

Atom	x	У	Ζ	$U(\text{eq}) (\text{\AA}^2 \times 10^3)$
Er(1)	0.3948(1)	0.25	0.9601(1)	6(1)
Se(2)	0.7901(1) 0.0502(3)	0.25	0.11338(1) 0.8169(2)	8(1)
O(1)	0.0392(3)	0.23	0.9314(5)	13(1)
O(2)	0.2494(9)	0.25	0.11808(7)	15(1)

2.4. Results and discussion

In the structure of $ErSeO_3Cl$, the Er is sevencoordinated, and its polyhedron can be described as a pentagonal bipyramid with a somewhat distorted base formed by one Cl and four O1 atoms and with O2 and Cl atoms in the apical positions (Fig. 1). The ErO_5Cl_2 polyhedra are linked via common O1–O1 edges forming zigzag chains along the *b*-axis. The parallel chains are

Table 4 Interatomic distances in ErSeO₃Cl

Bond		Bond length (Å)
Er(1)–O(2)	× 1	2.190(6)
Er(1) - O(1)	$\times 2$	2.260(4)
Er(1) - O(1)	$\times 2$	2.352(4)
Er(1)-Cl(4)	$\times 1$	2.689(2)
Er(1)-Cl(4)	$\times 1$	2.715(2)
Er(1)-Se(2)	$\times 1$	3.219(1)
Er(1)-Er(1)	$\times 2$	3.8259(5)
Se(2)-O(2)	$\times 1$	1.642(6)
Se(2)–O(1)	$\times 2$	1.711(4)

Fig. 1. Er polyhedron in the ErSeO₃Cl structure.

connected through common Cl atoms. Each Cl atom is equatorial in one chain and apical in the other (Fig. 2).

The Se atoms form open polyhedra typical for Se^{IV} compound [8,15] with two O1 and one O2 atoms. Usually, such a polyhedron is described as a trigonal SeO₃E pyramid with oxygen atoms in the base and lone electron pair (E) at the top. The selenium polyhedra are linked with the base of an ErO_5Cl_2 bipyramid in one chain via O1–O1 edge and with the apex of an Er polyhedron of the other chain via O2 atom (Fig. 3).

The 3D crystal structure of ErSeO_3Cl is isotypic to that of HoTeO₃Cl (*Pnma*, a = 7.3025 Å, b = 6.9654 Å, c = 9.0518 Å) [11]. The latter is built of pentagonal bipyramids, HoO₅Cl₂ linked via common oxygen edges, chlorine vertices and TeO₃E pyramids in a way similar to that described above in the structure of ErSeO₃Cl. Thus, HoTeO₃Cl and ErSeO₃Cl can be considered as progenitors of a new structure type, which comprises all *Ln*SeO₃Cl compounds with Ln^{3+} ionic radii smaller than that of Gd³⁺.

It should be mentioned that one of the BiSeO₃Cl modifications [9] has a structure related to HoTeO₃Cl and ErSeO₃Cl. The difference is that in the BiO₅Cl₂ pentagonal bipyramid, both chlorine atoms are basal, and the polyhedra are connected in zigzag chains via common O–Cl edges; the chains in turn are connected via apical oxygen atoms.

Up to now, HoTeO₃Cl was the only one representative of LnTeO₃X (Ln = REE; X = Cl, Br, I) phases with the described structure. It is known that when passing along the lanthanide series, the symmetry of LnTeO₃Cl compounds turns from orthorhombic (Ln = La, Nd) to tetragonal (Ln = Sm, Gd, Er, Lu) [16] in contrast to their bromide and iodide analogues, all of which are tetragonal. Still, judging from the structural model of the NdTeO₃Cl structure [7] and the unit-cell parameters of the mentioned oxychlorides [16], all of them belong to the Sillen-type layered structures, well determined for

Fig. 2. The chains of ErO₅Cl₂ polyhedra in the ErSeO₃Cl structure.

Fig. 3. ErSeO₃Cl crystal structure in polyhedra. *a*—along the *a*-axis of the unit cell, *b*—along the *b*-axis.

Table 5 Structure types of $MChO_3X$ (M=Bi, REE; Ch=Te, Se; X=Cl, Br, I) phases

М	Ch	X	Symmetry	Structure type	Reference
La, Nd	Te	Cl	Orthorhombic		[7]
Sm, Gd, Er, Lu			Tetragonal		[16]
Bi, Nd, Sm, Er, Lu	Te	Br	Tetragonal	Layered Sillen	[3,7,1,2]
Bi, La, Nd, Sm, Gd	Te	Ι	Tetragonal	-	[7,18]
La, Pr, Nd, Sm, Eu, Gd	Se	Cl	Tetragonal		[10]
Но	Te	Cl	Orthorhombic	HoTeO ₃ Cl	[11]
Gd, Dy, Ho, Er, Yb, Y	Se	Cl	Orthorhombic		[10] and this work
Bi	Se	Cl	Orthorhombic	α-BiSeO ₃ Cl	[8]
Bi	Se	Cl	Orthorhombic	γ-BiSeO ₃ Cl	[9]
Bi	Te	Ι	Monoclinic	β-BiTeO ₃ I	[17]

several oxybromides [7]. The latter are built of fluoritelike Ln_2O_2 layers, separated with a single halogen layer from two fluorite-like $LnTe_2O_5$ layers separated by a double halogen layer. $LnSeO_3Cl$ where Ln = La-Gd also possibly belong to the same structure type [10].

All $Ln \text{TeO}_3 X$ compounds have crystal structure derived from layered BiTeO₃Br type (Table 5). They were prepared at 500°C [16]. HoTeO₃Cl is an exception (3D structure); however, its single crystals were prepared at high temperature (800°C), and the compound is likely to be dimorphous. This may be the case for some other $Ln \text{TeO}_3 X$ and $Ln \text{SeO}_3 \text{Cl}$, as well.

Hence, most of the oxyhalides known by now, $MChO_3X$ (M=Bi, REE; Ch=Te, Se; X=Cl, Br, I) belong to one of the two different structural families (Table 5). Only BiTeO_3I [7,17] and BiSeO_3Cl polymorphs [8,9] are the only representatives of their own structure types. While the percentage of telluriumcontaining phases which do not belong to the Sillen family is relatively small, the selenium-containing oxychlorides form two sets of equal number. From this point of view, the search and determination of structures of $LnSeO_3X$ compounds with other halogens is promising. This problem is under investigation at the moment.

Acknowledgments

The authors thank the Russian Foundation of Basic Research (grant DFG-RFBR # 01-03-04002) for financial support.

References

- M.B. Novikova, V.A. Dolgikh, L.N. Kholodkovskaya, S.Yu. Stefanovitch, A.E. Baron, MSU Bull. Chem. 45 (1) (1990) 59–61.
- [2] I.V. Tarasov, V.A. Dolgikh, B.A. Popovkin, A.E. Baron, Russ.
 J. Inorg. Chem. 40 (1) (1995) 145–149.
- [3] L.N. Kholodkovskaya, V.A. Dolgikh, B.A. Popovkin, Russ. J. Inorg. Chem. 36 (1991) 1244.
- [4] L.N. Kholodkovskaya, V.A. Dolgikh, B.A. Popovkin, J. Solid State Chem. 116 (1995) 406.
- [5] V.A. Dolgikh, L.N. Kholodkovskaya, B.A. Popovkin, Russ. J. Inorg. Chem. 41 (1996) 932.

- [6] G.B. Nikiforov, A.M. Kusainova, P.S. Berdonosov, V.A. Dolgikh, P. Lightfoot, J. Solid State Chem. 146 (1999) 473–477.
- [7] P.S. Berdonosov, D.O. Charkin, A.M. Kusainova, Ch.H. Hervoches, V.A. Dolgikh, P. Lightfoot, Solid State Sci. 2 (2000) 553–562.
- [8] P.S. Berdonosov, S.Yu. Stefanovitch, V.A. Dolgikh, J. Solid State Chem. 149 (2000) 236–241.
- [9] S.A. Ibragimov, P.S. Berdonosov, V.A. Dolgikh, D.C. Huong, H. Oppermann, Inorg. Mater. 38 (12) (2002) 1291–1296.
- [10] D.G. Shabalin, P.S. Berdonosov, V.A. Dolgikh, H. Oppermann, P. Schmidt, B.A. Popovkin, Russ. Chem. Bull. 1 (2003) 93–96.
- [11] S.F. Meier, T. Schleid, Z. Anorg, Allerg. Chem. 628 (2002) 526–528.
- [12] Yu.V. Karyakin, I.I. Angelov, The Pure Chemical Reagents, The Handbook for Inorganic Reagents and Preparetes Prepara-

tion in Laboratory, 4th Edition, Khimiya, Moscow, pp. 56 (in Russian).

- [13] M. Sheldrik, SHELXS-97, Program for Crystal Structure Solution, University of Göttingen, Germany, 1997.
- [14] M. Sheldrik, SHELXL-97, Program for Crystal Structure Refinement, University of Göttingen, Germany, 1997.
- [15] J.D. McCullough, J. Am. Chem. Soc. 59 (1937) 789-794.
- [16] G.B. Nikiforov, P.S. Berdonosov, V.A. Dolgikh, B.A. Popovkin, Russ. J. Inorg. Chem. 42 (11) (1997) 1785–1789.
- [17] P. Wilk, H.-L. Keller, L. Wimbert, Z. Kristallogr. 15 (Suppl.) (1998) 64.
- [18] M.B. Novikova, V.A. Dolgikh, L.N. Kholodkovskaya, S.Yu. Stefanovich, V.M. Shorikov, Izv. Akad. Nauk SSSR (Russ.) Inorg. Mater. 27 (2) (1991) 388–391.